TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors.
نویسندگان
چکیده
Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.
منابع مشابه
Title: Touch Responsiveness in Zebrafish Requires Voltage-gated Calcium Channel 2.1b 1 2 Abbreviated Title: Fakir Is Caused by a Mutation in Cav2.1b 3 4
24 25 The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has 26 remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene 27 encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild type 28 CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via 29 morp...
متن کاملtouché Is required for touch-evoked generator potentials within vertebrate sensory neurons.
The process by which light touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, sub...
متن کاملNa(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation.
A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of sc...
متن کاملTouch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b.
The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleo...
متن کاملSensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors
In all but the simplest monosynaptic reflex arcs, sensory stimuli are encoded by sensory neurons that transmit a signal via sensory interneurons to downstream partners in order to elicit a response. In the embryonic zebrafish (Danio rerio), cutaneous Rohon-Beard (RB) sensory neurons fire in response to mechanical stimuli and excite downstream glutamatergic commissural primary ascending (CoPA) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 32 شماره
صفحات -
تاریخ انتشار 2011